If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+116x-108=0
a = -16; b = 116; c = -108;
Δ = b2-4ac
Δ = 1162-4·(-16)·(-108)
Δ = 6544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6544}=\sqrt{16*409}=\sqrt{16}*\sqrt{409}=4\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(116)-4\sqrt{409}}{2*-16}=\frac{-116-4\sqrt{409}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(116)+4\sqrt{409}}{2*-16}=\frac{-116+4\sqrt{409}}{-32} $
| -2x+(5-x)+3=-(6x+7) | | 2(x+1)=3x-x+2= | | 0=-6t^2+24t+6 | | 10x^2-3x=-2x^2 | | 6n+(-10)=11 | | 5x^2+0.5x+1=0 | | 9x−4x+116=9x+56 | | -2=h+1 | | 2+8x=8x | | -6x+4=53 | | 10=-6t^2+24t+6 | | -2x+(5-x)+3=(6x+7) | | 42=7(z-) | | 5a-10=14-3a | | g-5=6 | | 7x10=5x+6 | | 9g+4-5g-2=-6 | | 8y+2=-46 | | 189=11m | | 30=-6t^2+24t+6 | | 15x-10+5x+50=90 | | x+1.7x=19 | | 7(x+6)+77x=9 | | 1/5(1/3x+10)=-10 | | 6-4r=16+r | | 15x-10+5x+50=180 | | b-2/15=2 | | G(x)=(x-3) | | 2/5v=-12 | | 3a+17=9a-30 | | G(x)=(x-9) | | x+1/2+3/4-3x=5 |